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Computational sequence design methods are used to
engineer proteins with desired properties such as
increased thermal stability and novel function. In
addition, these algorithms can be used to identify an
envelope of sequences that may be compatible with a par-
ticular protein fold topology. In this regard, we hypoth-
esized that sequence-property prediction, specifically
secondary structure, could be significantly enhanced by
using a large database of computationally designed
sequences. We performed a large-scale test of this
hypothesis with 6511 diverse protein domains and 50
designed sequences per domain. After analysis of the
inherent accuracy of the designed sequences database, we
realized that it was necessary to put constraints on what
fraction of the native sequence should be allowed to
change. With mutational constraints, accuracy was
improved vs. no constraints, but the diversity of designed
sequences, and hence effective size of the database, was
moderately reduced. Overall, the best three-state predic-
tion accuracy (Q3) that we achieved was nearly a percen-
tage point improved over using a natural sequence
database alone, well below the theoretical possibility for
improvement of 8–10 percentage points. Furthermore,
our nascent method was used to augment the state-of-the-
art PSIPRED program by a percentage point.
Keywords: computational protein design/fuzzy nearest
neighbor/RosettaDesign/secondary structure prediction

Introduction

Computational sequence design (CSD) is becoming increas-
ingly useful in engineering proteins for increased thermal
stability, novel function and new folds. Beyond its utility in
the protein engineering community, CSD has been used to
study the fundamental question of sequence–structure com-
patibility (Larson et al., 2002) and has been evaluated in the

realm of protein structure prediction (Larson et al., 2003; am
Busch et al., 2009; Schmidt Am Busch et al.), including
enhancing homology detection (Larson et al., 2003), fold rec-
ognition (am Busch et al., 2009; Schmidt Am Busch et al.),
ab initio model detection (Koehl and Levitt, 2002) and active
site residue identification (Pei et al., 2003; Cheng et al.,
2005). For example, Levitt and co-workers conjectured that
ab initio models that yield designed sequences closest to the
query sequence must also be closest to the native structure
(Koehl and Levitt, 2002). am Busch et al. (2009) and Pei
et al. (2003) found that computationally designed sequences
improved the position-specific scoring matrices used to
detect other proteins with the same fold. Pei et al. (2003)
and Cheng et al. (2005) used computationally designed
sequences to improve the detection of active site residues by
comparing natural sequence substitution rates with muta-
tional rates from computational design. The theory behind
their idea is that computational design is often singularly
focused on thermal stability. Therefore, if it calls for
mutations to naturally conserved residues, those residues may
be conserved to preserve a protein function.

More fundamental than detection of homologous proteins
for structure prediction, secondary structure prediction (SSP)
is a relatively mature problem starting with the work of Chou
and Fasman (1974). Traditionally, the goal is to assign each
residue in a query sequence one of the following eight sec-
ondary structure states: a-helix (H), 310-helix (G), p-helix (I),
isolated b-bridge (B), b-strand (E), bend (S), turn (T) and
coil (C). For simplicity, the eight secondary structure states
can be grouped into three categories: [H, G, I]!helix, [E,
B]!strand and [C, T, S]!coil. SSP benefits from the ever-
increasing number of known protein structures and sequences.
Protein structures provide references to how different
stretches of sequences translate to secondary structure. In
addition, protein sequences from the ever-increasing database
of sequenced genomes add to the profile of a query sequence,
thereby improving the search (using e.g. PSI-BLAST) for
similar sequence fragments in the Protein Data Bank (PDB)
(Berman et al., 2002). SSP accuracy has been increasing
(Fig. 1a) in tandem with the increasing number of known
unique PDB sequences (Fig. 1b). Figure 1c suggests that
algorithmic improvements may have contributed to the steep
improvement in accuracy early on, with increased knowledge
of unique structures now being the major determinant.
Currently, top-performing algorithms, such as PSIPRED
(Jones, 1999), achieve three-state SSP accuracy �81%. It has
been predicted that SSP will reach an asymptotic accuracy of
�88% because identical sequence stretches in different ter-
tiary environments can, at times, code for different secondary
structures (Kabsch and Sander, 1984; Rost et al., 1994; Levin,
1997). Most optimistically, linear extrapolation of Fig. 1a
implies that asymptotic accuracies will be achieved in �15
years. However, as reasoned later on in this work, the curve
may flatten out in the future, further extending the time until
asymptotic accuracy will be observed.
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Given that it could take �15 years to reach the asymptotic
accuracy limit, we wondered whether CSD could be used to
bolster the database of known sequence–secondary structure
correspondences, thereby improving SSP accuracy. More
generally, but not addressed in this work, can the space of
designed sequences aid in predicting primary protein features
such as solvent accessibility, disordered region prediction,
sub-cellular localization and other properties that typically
use only the sequence or sequence profile as input in the pre-
diction system? Computational protein design provides
alternative sequences that are potentially compatible to a
given fold. Moreover, a study by Zhang et al. (2006)
suggested that the known structural (fold) space of single-
domain proteins is nearing completeness. Supposing this
conjecture is true, there still is the remaining problem of
determining the entire space of sequences that could fold up
into each unique domain structure. CSD is a plausible means
of discovering the sequence space for a given structural
domain.

In this work, our hypothesis is that CSD can enrich the
database of sequences associated with a given structural
domain, thereby significantly enhancing SSP. We use the
RosettaDesign program to generate sequences that are com-
patible with the structural classification of proteins (SCOP)
database of known structural domains (Kuhlman and Baker,
2000; Rohl et al., 2004). Secondary structure is predicted
using a fuzzy nearest-neighbor algorithm (Bondugula and
Xu, 2007). We also investigate whether the designed
sequences encode secondary structure correctly in

comparison to known protein structures. In the process, we
revisit the age-old estimation problem of the theoretical limit
of SSP accuracy (Kabsch and Sander, 1984; Rost et al.,
1994; Levin, 1997) using a significantly larger database of
known structures than previously reported in the literature.

Methods

In this work, the Astral SCOP 1.75 (Murzin et al., 1995;
Hubbard et al., 1999) structural domain database filtered at
25% sequence identity was used for both ‘training’ and
testing. In fuzzy nearest-neighbor approaches, there is no
training, per se, but the database entry matching the query
test sequence can be left out. A total of 6511 SCOP 1.75
domains were used after some domains were discarded due
to large missing segments (Nres . 10), non-contiguities in
the domain sequence or program failures in any of the design
runs. The seven-letter SCOP identifiers used in this work
are available as Supplementary data. Secondary structure
for each residue in the database was assigned using
DSSP (Kabsch and Sander, 1983). The database of native
sequences and DSSP-assigned secondary structure is referred
to as ‘NaturalDB’ in the remainder of this work.

The Rosetta suite of programs includes the RosettaDesign
module for designing sequences of loops, whole proteins,
interfaces, etc., that are compatible with a given structural
template (Das and Baker, 2008). The RosettaDesign module
consists of an energy function and search components. The
energy function, which is an all-atom force field plus an

Fig. 1. Historical progression of (a) SSP accuracy (Rost, 2003) and (b) number of representative PDB structures (25% sequence identity cutoff) (Griep and
Hobohm, 2009). (c) Synchronistic comparison of prediction accuracy vs. number of representative PDB structures.
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implicit solvent model that favors hydrophobic amino acids
in the core and polar amino acids on the surface, is used to
evaluate the suitability of a candidate sequence with a struc-
tural template. The search component consists of Monte
Carlo optimization with simulated annealing for exploring
various amino acid substitutions and side chain confor-
mations. RosettaDesign has been parameterized by the orig-
inal authors to retain the frequencies of amino acids
occurring in the cores and surfaces of naturally occurring
proteins. There are two methods available for full-length
protein sequence design: the first is to keep the protein back-
bone fixed and the second allows for some backbone flexi-
bility (Smith and Kortemme, 2008). For each structural
domain in the NaturalDB, we generated 50 design sequences
using the fixed backbone option and no extra side-chain
dihedral sampling (i.e. no –ex# options). A sum total of
325 550 (6511 domains � 50 sequences per domain)
sequences make up each of our design databases, which we
refer to as DesignDBX, where X ¼ 0, 35 and 65. DesignDB0
had no restrictions on potential mutations, while
DesignDB35 enforced at minimum 35% sequence identity
between design and native sequence and, likewise, 65% for
DesignDB65. Sequence identity restrictions were imposed by
specifying 10 sets of random residue positions not permitted
to change. Five sequences were designed for each specifica-
tion for a total of 50 designs. We did not preferentially
choose to keep or create disulfide bridges, thus permitting all
20 amino acids to be substituted at allowed residue positions.

We used a modified fuzzy k-nearest-neighbor (FKNN)
algorithm described by Bondugula et al. (Bondugula and Xu,
2007; Bondugula et al., 2009) to predict secondary structure.
The algorithm proceeds in two steps. In the first step, a
protein profile is generated by running PSI-BLAST (Altschul
et al., 1997) against a large database of protein sequences. Li
et al. (2002) have shown that sequence identity filtered data-
bases perform better for sequence-property prediction than
the complete non-redundant (NR) (Maglott et al., 2000)
database. Therefore, we used NR90 to generate a profile of
the query sequence. NR90 is a subset of the NR database fil-
tered for sequence identity such that all sequences are ,90%
identical to each other. The profile is used to search for
sequence segments from known protein structures by
PSI-BLAST a second time. Depending on the experiment,
we used either NaturalDB or DesignDBs in this step. The
segments found in the search are used to predict the second-
ary structure of the input sequence using the modified FKNN
algorithm described below.

The prediction, Pi, of residue i of the query sequence is
a three-element vector representing the predicted likelihood
of the three secondary structure states: helix (H), strand
(E) and coil (C). Using the FKNN formula, it is calculated
as a weighted average of the actual secondary structure
states of the aligned fragments returned from a
PSI-BLAST search of the NaturalDB or the DesignDBs,

Pi ¼ S
Nhits

j¼1B2
j Sij=S

Nhits

j¼1B2
j where j indexes the hits returned

by PSI-BLAST, Sij is the three-dimensional secondary
structure unit vector at position i (i.e. Sij ¼ [1 0 0] if the
state is ‘helix’) of the jth fragment hit and Bj is the bit
score for the hit j that overlapped with position i. Each
fragment is weighted by the square of the alignment bit
score returned by the PSI-BLAST program. The exponent

of the bit score (which is set to 2) is the only parameter
of our ‘raw’ FKNN approach. Other scores could be
potentially incorporated, including expectation value
(E-value), alignment length and sequence identity. From a
computational complexity perspective, the most time-
intensive component is the generation of the query PSSM,
which is commonly required by most SSP programs. Our
FKNN SSP program can be downloaded at http://www
.bhsai.org/downloads/fiefpred/.

We benchmarked the approaches with the leave-one-out
method of testing, which, in effect, means that the query
sequence was no more than 25% identical to any other
member of the training set. We report the raw results of the
nearest-neighbor algorithm and the filtered results using an
artificial neural network (ANN). We also used an ANN to
combine various methods. For example, we combined the
three-state vectors from our two nearest-neighbor approaches
with the output of version 2.4 of the PSIPRED SSP software
(Jones, 1999). We trained all ANNs in this work with a small
set (N ¼ 300) of the 6511 proteins (,5%) leaving 6211 pro-
teins for testing. The ANNs are fully connected feed-forward
networks trained using standard error back-propagation
algorithms (Haykin, 1998).

We report accuracy results in terms of Q-measures, Q3,
QH, QE and QC, defined as follows:

Q3 ¼ 100%�M

T

QkH;E;Cl ¼ 100%�MkH;E;Cl

TkH;E;Cl

where M is the number of correctly classified amino acids, T
is the total number of amino acids, MH is the number of cor-
rectly classified amino acids in the helix configuration and
TH is the total number of amino acids in the helix configur-
ation. We investigated the use of other metrics such as
segment overlap (Zemla et al., 1999) but found no significant
relative differences among methods (results not shown).

As a comparison and an adjunct to the nearest-neighbor
algorithm in this work, we chose the popular and top-
performing PSIPRED SSP software (Jones, 1999). There are
multiple versions of PSIPRED available online as recent as
version 3.2. We chose to use PSIPRED v2.4 because it is the
latest version for which the training set is also available such
that we can clearly differentiate between training and testing
sets.

Establishing the upper limit of secondary prediction accuracy
using a fragment-based dictionary
We performed a best-case scenario analysis on our secondary
structure databases. The question is how accurate would a
nearest-neighbor algorithm be if all residue fragments of
length Nres of a query were found in the database excluding
the query sequence itself? In other words, how consistent are
the one-to-one mappings of residue strings of length Nres to
their DSSP-assigned secondary structures (Kabsch and
Sander, 1984; Rost et al., 1994). To answer this question,
every residue fragment of length Nres in the test database was
collected as a dictionary of sequence ‘words’ vs. their corre-
sponding DSSP-derived three-state ‘definitions’ as seen in
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Fig. 2. Precision for a given word was determined as the
ratio of the occurrences of the most populated secondary
structure state at a specific position divided by the number
of identical words in the database. For example, if every
time the word ‘AAAERY’ translated to the definition
‘HHHHHC’, then the prediction precision for this word
would be 100%. However, if there were four occurrences of
‘AAAERY’ in the dictionary and one of them differed with
the definition ‘HHHHHH’, then the precision would be 75%
for the last residue position of this word and 95.8% overall.
In computing the prediction accuracy of words in the
DesignDBs, the most common definition in the NaturalDB
dictionary, if there was more than one, was considered the
correct answer. Finally, due to increased complexity, we did
not consider natural sequence variability quantified by substi-
tution matrices (e.g. BLOSUM62) and small alignment gaps.

Results

Design sequence databases, DesignDB0, DesignDB35 and
DesignDB65, were generated at imposed minimum sequence
identities to native of 0, 35 and 65%. The actual similarity of
the sequences to their native counterparts is shown in Fig. 3.
The designed sequences in DesignDB0 are, on average,
30% identical to the native sequence, which is in line

with previous results of the RosettaDesign developers
(Kuhlman and Baker, 2000). DesignDB65, on the other
hand, averages 73% identical with a relatively tighter
distribution.

The FKNN algorithm applied to the NaturalDB database
provides a reference point for other prediction results. At a
raw accuracy of 76.7% (79.7% after ANN filtering), the
FKNN algorithm is satisfactory but almost two percentage
points inferior to the state-of-the-art, e.g. PSIPRED (Jones,
1999). The primary reason for the inferior results is that the
algorithm is quite simple and the neural networks are only
trained as a filter of the FKNN output, not on the query
sequence or profile. For the FKNN/DesignDB results, the
unconstrained DesignDB0 is 1.5% worse than the
NaturalDB. This negative result along with the analyses pre-
sented below inspired us to constrain the designed sequences
by imposing random mutational constraints with a target
minimum sequence identity to the native. DesignDB35
yields better results, comparable with the NaturalDB.
DesignDB65 shows a 0.4% improvement (one-tailed
Wilcoxon signed rank test P ¼ 2.0144e290 at the 0.005 sig-
nificance level) over NaturalDB. The best results, however,
are achieved by combining the NaturalDB and DesignDB
predictions, which yield a 1.2% improvement in raw results
and a 0.8% enhancement over NaturalDB using an
ANN-generated consensus of the two methods.

The simple FKNN algorithm is not expected to perform
as well as a mature algorithm such as PSIPRED.
Therefore, it is interesting to ask whether an established
method can be enhanced by the FKNN algorithm with or
without a designed sequence database (Bondugula and Xu,
2007). The consensus of FKNN/NaturalDB and PSIPRED
v2.4 is improved 0.7% over PSIPRED alone. The consen-
sus of FKNN/DesignDB65 and PSIPRED v2.4 is even
better with a 1.2% enhancement compared with PSIPRED.
A one-tailed Wilcoxon signed rank test shows that the
neural network consensus of PSIPRED v2.4 and FKNN/
DesignDB65 shows a statistically significant (P ¼
1.3741e275 at the 0.005 level) improvement over the con-
sensus of PSIPRED v2.4 with FKNN/NaturalDB.
Intriguingly, the combination of all three methods leads to
no net improvement over the two-method consensus. Also,
it is worth noting that the strand prediction accuracy, QE,
of PSIPRED was improved by two percentage points with
the inclusion of FKNN/DesignDB65, while the coil predic-
tion accuracy was improved by one percentage point. We
compared individual protein predictions from PSIPRED vs.
the PSIPRED/DesignDB65 consensus. The consensus
method improves upon PSIPRED by reducing or extending
strand and helix segments by one to three residues in the
direction of closer agreement to the actual observations.
This type of variation is consistent with the fact that the
ends of predicted secondary structure segments tend to be
less reliable (lower scoring) and therefore more apt to
state changes when a consensus is made. In contrast,
rarely is a new secondary structure segment created or an
old segment destroyed. Finally, we made sure that the
PSIPRED v2.4 results are not favorably biased by testing
on training data. Excluding the 1683 query sequences (of
the 6511) that are .25% homologous to any protein in
the training set of PSIPRED v2.4, the raw results are vir-
tually identical to those in Table I: Q3 ¼ 81.0% for

Fig. 3. Distributions of sequence identity of the designed sequences to their
natural sequence counterparts averaged over all designs for each protein.

Fig. 2. Schematic for building a dictionary of sequence–secondary structure
correspondences of six-residue words.
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PSIPRED alone and Q3 ¼ 82.4% for the equally weighted
combination of PSIPRED v2.4 and FKNN/DesignDB65.

Looking at the distribution of alignment lengths and bit
scores from 100 protein queries in Fig. 4a and b, we see that
the design database improves both the alignment length and
the bit scores of the top 2000 hits for a given query. As
impressive as this appears, the increased hit quality is most
likely a function of the fact that the DesignDBs are 50 times
larger than the NaturalDB. Our conjecture can be surmised
by the fact that the distributions of the DesignDBs are identi-
cal even though DesignDB65 is clearly more constrained in
sequence space than the others (as seen in the Dictionary
analysis section).

Dictionary analysis
Given that the DesignDBs provide significantly more search
space compared with NaturalDB, why did prediction accu-
racy not improve more significantly? To answer this ques-
tion, we analyzed the dictionaries of sequence-property
correspondences (Fig. 2). First, with our large 6511 SCOP
domain data set, we revisit the question ‘how self-consistent

are the three-state definitions of the native sequences?’
Tabulating all exact matches of sequence words of a given
length, what percentage of corresponding three-state second-
ary structure strings matched the consensus? As can be seen
in Fig. 5a, the precision of exact string matches tops out
�90%, which is close to the prediction (�88%) made more
than a decade ago (Kabsch and Sander, 1984; Rost et al.,
1994). Furthermore, in Fig. 5c, it can be seen that the unique
word count as a percentage of total possible words drops pre-
cipitously after five-residue strings (i.e. pentapeptides). This
may explain why we reach only �80% Q3 accuracy using
the NaturalDB. This result also does not bode well for future
improvements in prediction accuracy because large increases
in sequence space may be required to boost recognition of
longer words and correspondingly more precise secondary
structure definitions.

In contrast, the unconstrained design set, DesignDB0, tops
out at an ‘asymptotic’ accuracy of 82.7% with 10-residue
words (Fig. 5a), in accordance with its inferior predictive
accuracy. Moreover, even if 90% asymptotic accuracy could
be obtained by this DesignDB, the word space of only one
additional residue is nearly complete (Nres ¼ 6) as seen in
Fig. 5c, where the number of unique words as a fraction of
all possible words appears to be shifted by about a residue.
As alluded to before, correctly assigned 10-residue words are
required to reach the pinnacle of 90% asymptotic accuracy,
which would presumably require a significantly larger
DesignDB (�204 ¼ 160 000� larger, at least). Sequence
space limitations notwithstanding, we reasoned that placing
constraints on mutations would increase the asymptotic accu-
racy achieved by a designed sequence database. By defi-
nition, in the limit of 100% sequence identity constraints
(i.e. no mutations), the 90% accuracy limit would be
obtained as DesignDB becomes equivalent to NaturalDB. As
expected, imposed sequence identities of 35 and 65% lead to
improved asymptotic accuracies at the 10-residue word
length (83.8 and 84.5%, respectively). Unfortunately, as the
mutational constraints are increased, the diversity of the
designed sequences drops. For reference, the unconstrained
DesignDB0 has �40 times more words than NaturalDB
(Fig. 5b), which translates to a little more than a single
amino acid increase in dictionary coverage based on Fig. 5c.
In comparison, as seen in Fig. 5b, DesignDB35 has on
average 10% fewer unique words than the unconstrained

Fig. 4. Distributions of (a) alignment lengths and (b) bit scores for 100 PSI-BLAST queries of the NaturalDB (circles) and DesignDBs (excluding the hits
from the query sequence and query designs). Legend: squares—DesignDB0, up triangles—DesignDB35, down triangles—DesignDB65.

Table I. Secondary structure prediction accuracies for various protocols.

Neural network results are reported for 6211 proteins (301 in training set).

Linear combination weights specified in the protocol are only relevant to the

Raw results column

Protocol Raw Neural network

Filter or combination

Q3 Q3 QH QE QC

NaturalDB 76.7 79.7 75 73.5 82.5
DesignDB0 75.1 78.0 73.8 71.4 81.0
DesignDB35 77.1 79.6 75.3 73.9 81.7
DesignDB65 77.7 80.1 74.9 74.2 82.6
1

2
(NaturalDB þ DesignDB65)

77.9 80.5 75.3 75.0 82.8

PSIPRED v2.4 (Jones, 1999) 81.0 81.4 77.1 75.0 82.4
1

2
(NaturalDB þ PSIPRED)

81.9 82.1 77.0 76.2 83.2

1

2
(DesignDB65 þ PSIPRED)

82.5 82.6 77.4 77.0 83.5

1

3
(NaturalDB þ DesignDB65 þ PSIPRED)

82.3 82.5 77.2 77.1 83.5
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DesignDB0 at various word lengths; DesignDB65 has �40%
fewer unique words than DesignDB0. All in all, there is a
trade-off between sequence diversity and asymptotic accu-
racy for the different DesignDBs.

Discussion

The hypothesis of this work was that a set of designed
sequences for each structural domain in a database would
increase the number of nearest-neighbor matches to a query
sequence, thereby enhancing the prediction of secondary
structure. Our experiments indicate that the enhancement
associated with the development of a designed sequence
database is statistically significant, but well below the theor-
etical limits of prediction accuracy. Furthermore, while the
1% overall improvement on PSIPRED is appealing, consen-
sus predictions with other methods in the literature may yield
similar gains.

Why weren’t prediction accuracies improved more?
Designed sequences with no functional constraints tend to
deviate from the natural space of sequences (Cheng et al.,
2005) and overemphasize the importance of structural stab-
ility. Moreover, the loss of functionally conserved residues
upon backbone redesign will reduce the ‘realness’ of uncon-
strained computationally designed sequences. Also, it
has been previously noted that computationally designed
sequences are somewhat different from native sequences. In
an early study of RosettaDesign, the average sequence

identity between the design and native sequences in the core
region of a protein was �55%, while the overall sequence
identity was �35% (Liu and Kuhlman, 2006) in accord with
our results. Nature ‘designs’ proteins based on a variety of
factors, including thermal stability and function. For
example, it has also been observed that computationally
designed proteins are often more stable than the native pro-
teins from which their original backbone templates were
derived (Dantas et al., 2003). This can partially be rational-
ized by the fact that extremely stable proteins are unfavorable
for organisms which must regularly turn over many of its
proteins through cellular recycling.

In addition, design programs do not have the perfect
scoring function for thermodynamic stability. Even with an
optimal potential energy function, a given design model has
to be evaluated based on its free energy of stability in the
basin of the desired backbone conformation. To compute
this, molecular dynamics or Monte Carlo simulations would
be needed, but these methods are orders of magnitude slower
than the actual design algorithm, and thus currently unfeasi-
ble for large-scale generation of designed sequences.

The results for nearest-neighbor matching to a database of
designed sequences were quite good, considering that
designed sequences tend to drift away from natural sequences
(Kuhlman and Baker, 2000). Because designed sequences
offer a range of possible sequences for a given backbone
template, they can be especially useful when a protein has
few known sequence homologues. We could not find a

Fig. 5. Dictionary analysis of the sequence–secondary structure databases: (a) accuracy of exact sequence matches compared with consensus secondary
structure of native sequences as a function of word length, (b) number of unique words of a given length, and (c) unique words as a fraction of all possible
words in the databases for each length. In the native sequence analysis, the query sequence is not included in the consensus. In the design sequence analysis,
matches with parent native sequence are not included in the statistics. Legend: circles—NaturalDB, squares—DesignDB0, up triangles—DesignDB35, down
triangles—DesignDB65.
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scheme better than random selection to cull out the ‘best’
designed sequences, such as filtering with an alternative
scoring function (Lee and Olson, 2007) or similarity to
native. Therefore, we simply used the whole collection in
our search. We also did not choose to fix the small clusters
of residues that might be important for function because this
seemed irrelevant for SSP. Finally, we tried using 200
designed sequences per protein domain (instead of 50), but
found that the results from the FKNN algorithm did not
materially improve (results not shown). Most likely, the extra
sequences did not significantly increase diversity because of
the fixed backbone limitation. Therefore, it may be worth-
while to investigate the use of larger sets of designed
sequences while incorporating backbone flexibility.

In order to understand why prediction accuracy enhancement
due to computational design was not more pronounced, we per-
formed a simple analysis by building a dictionary of correspon-
dences between residue strings and secondary structure state
strings. Using this approach, we found that unconstrained
designed sequences (DesignDB0) increased the number of
unique words by up to a factor of 40, but sometimes associated
with the wrong secondary structure strings, thus reducing the
asymptotic accuracy of the design sequence database from 90
to 82.7%. By imposing constraints on the fraction of allowable
mutations, we were able to recover �2% of the asymptotic
accuracy without significantly lowering the number of unique
words. The best designed sequence database, DesignDB65
yielded a modest 0.8% accuracy improvement compared with
only using natural sequences. Most likely, the mutation con-
straints compensate for limitations of the sequence design
objective function in RosettaDesign. Computational design in
tandem with backbone optimization has been argued to be a
more accurate approach (Larson et al., 2002). However, due to
the greatly increased computational complexity of this
approach, we did not pursue it in this pilot work.

In conclusion, sequences designed from a large set of
fixed backbone protein domains modestly enhance SSP accu-
racy. Furthermore, the combination of PSIPRED and FKNN/
NaturalDB led to a small improvement over PSIPRED alone.
There appear to be two primary limitations to our current
approach. First, unconstrained computational design leads to
errors in predicted secondary structure compared with a
natural database benchmark. This can be rectified to some
extent by introducing constraints in the percentage of resi-
dues that can be mutated. Second, the sequence space
necessary to achieve an accurate and complete 10-residue
word lookup table of secondary structure is still several
orders of magnitude larger than the computationally designed
sequence databases used in this work.

Supplementary data

Supplementary data are available at PEDS online.
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